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Summary 

This deliverable is about the possibility to use crop growth models for predicting grain yield at variety 

and trial level when applied to multi-environmental trials used for varietal evaluation. This was first 

applied to sunflower and Terres Inovia post-registration trials (1431) from 2003 to 2020. This 

document pointed out the importance of an accurate soil characterization for final prediction with the 

SUNFLO crop growth model. In spite of uncertainties in predicting the response of a wide range of 

sunflower cultivars, the model could be used for the environmental characterization of each trial when 

sufficient crop management, climate and soil data are available.   
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1  Introduction 

Crop growth models (CGM) – or process-based models - simulate the dynamic responses of crops 

(or genotypes, G) as a function of environmental conditions (E) and management practices (M) and 

hence are appropriate tools to predict and explain G×E×M interactions (Chapman, 2008).  

Therefore CGMs could have practical applications for improving the design and evaluation of multi-

environment VCU trials (Jeuffroy et al., 2014 ; Casadebaig et al., 2016 ; Mangin et al., 2017); they 

could be also embedded in decision support systems used for variety choice. But for that purpose, 

crop models should be made more genotype specific (Wang et al., 2019). 

A main objective of INVITE was to calibrate crop models for high-resolution prediction at genotype-

specific level instead of at the current crop level (T4.2). This was done on wheat, maize and 

sunflower. However, a first deliverable (D4.2) will be focused on the application of a crop growth 

model developed for sunflower (SUNFLO) on a representative MET used for variety evaluation in 

order to evaluate the model performance at trial and variety level.   

For sunflower, we have focused our study on the analysis of the Terres Inovia experimental network 

used for post-registration in France. It is the most extensive network in terms of years and number 

of trials, with the best quality data, in particular with access to the names of the varieties. This was 

an absolute pre-requisite for testing the performance of the model in varietal discrimination.  

This document describes the results of yield simulation of the entire Terres Inovia network using 

the SUNFLO crop model (Casadebaig et al., 2011). After a short description of the data, we described 

the data curation and processing needed for simulation. Then we compared the simulation results 

according to different sources of soil characterization. Finally, we decomposed the results in terms 

of environmental and genotypic effects in order to evaluate the ability of the model to represent 

each term of yield variation. 

2  Materials & Methods 

1.1  A crop model: description of SUNFLO 

SUNFLO crop model, specific to sunflower, was built by INRAE in collaboration with Terres Inovia 

(Casadebaig et al., 2011). Using different input variables characterizing climate, soil, cultivation 

practices or genotype characteristics, SUNFLO is a software program that simulates on a daily basis 

final crop productivity (grain yield, oil concentration), in-season variables (biomass, LAI, N uptake, 

N and water soil content…) and abiotic stress patterns (water, heat, cold or nitrogen) under different 

growing conditions (Figure 1).  



Deliverable D4.2 6 

 

 

 

INVITE – H2020 n°817970 

 

 

Figure 1. - Conceptual diagram of SUNFLO cultural model to identify different types of data. 

 

1.2  Experimental network: Terres Inovia (France) 

The data used in this study came from the field trials used for post registration of newly registered 

sunflower varieties under the governance of Terres Inovia (The French technical institute for 

oilseeds, partner of INVITE). The dataset was composed of 1431 different trials from 2003 to 2020 

spread all over France (Figure 2). The experimental network included between 36 and 105 trials 

each year. 

Different information were collected on these plots: site identification (id, commune, year, ZIP code), 

plot management (date, depth and density of sowing, harvest date, N fertilization and irrigation dates 

and amounts, experimental design), soil characteristics (stoniness, soil depth, available water 

content), previous crop. Some years were particularly well documented, as 2009 and 2014-2007, in 

the frame of research projects in partnership with INRAE. But data from other years were often less 

complete for soil and management because the purpose of these trials was mainly the relative 

comparison of crop yield between varieties. Then these yield data are averaged by Terres Inovia to 

recommend the best yielding varieties at a regional level. This purely experimental approach is not 

based on a diagnostic of environmental conditions. 

On average, a sunflower trial compares 11 different varieties. From 2003 to 2020, 397 unique 

varieties were compared with a total of 13916 observations (year x location x variety). Different 

characters can be observed on each variety: flowering date, yield (dry or standardized), thousand seed 

weight, oil concentration, oil quality, grain moisture percentage, impurity percentage, protein 

percentage, plant height. Only yield was systematically reported. 
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Figure 2. Geographical distribution of field trials conducted between 2003 and 2020 by Terres 
Inovia. The trials are grouped by “commune” (township) which is the most confident geographical 
data we have. Each point represents a French commune and the color and size represent the number 
of trials carried out on the commune’s territory over the years. 

1.3  Climate database 

Climatic data used for each trial description were derived from the SAFRAN database. SAFRAN 

(Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige) uses surface 

observations combined with analysis data from meteorological models to produce climate variables 

such as precipitation, solid or liquid, hourly temperatures, wind and radiation. These profiles are 

then spatially projected on a regular 8 km grid over France. 

This database provided the French daily climate data for all the years considered in our study. Each 

trial was associated with the grid cell having the closest center to the centroid of the trial’s 

commune. 

1.4 Soil database 

Attached to the SAFRAN climate database, a description of the grid cells has been published 

(Bertuzzi, 2022). These files include several attributes attached to the SAFRAN mesh: geographic 

attributes (coordinates and altitude), land use, administrative division, and soil attributes. The soil 

data, coming from the Geographic Database of Soils of France (INRA, 2018), contains in particular 

the depth of the soil and the available soil water capacity, maximum and minimum. This data source 

will be referred to as the “French soil database” in the following. 
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The European Soil Data Centre (ESDAC) is the thematic center for soil related data in Europe. We 

used the European Soil Database derived data (Hiederer, 2013, 

http://esdac.jrc.ec.europa.eu/content/esdb-derived-data, 1x1 km grid cells) to obtain the 

quantitative soil properties corresponding to each location, i.e. total available water content, soil 

depth available to roots, bulk density, coarse fragments for two soil layers ([0, 30 cm], ]30 cm, 

rooting depth]). This data source will be referred to as the “European soil database” in the following. 

1.5 Genotype data 

Twelve genotypic parameters are used to characterize the varieties and differentiate their 
functioning: four phenology parameters; four leaf architecture parameters; two parameters of 
response to water stress; two parameters of allocation of photosynthesis products to achenes 
(Casadebaig et al., 2011). These data are time-consuming to collect and were therefore not routinely 
estimated for all varieties grown in France. Most of these parameters are measured directly in the 
field or in the greenhouse (or outdoor pot platform) under semi-controlled conditions. We have 
phenotyped 133 varieties to date. Some additional varieties were phenotyped during the course of 
the INVITE project.  

Table 1 – Sunflo parameters: min, max and mean for 133 varieties 

3  Results 

3.1 Curation of the dataset 

Between 2003 and 2020, Terres Inovia conducted 1433 trials in France. A part of the trial network 

was not used in our study because it was incomplete. 12% of the trials were not harvested (Table 2, 

step 2) because they were experimentally invalidated before the harvest date. 7% of the trials were 

statistically invalidated after harvest because their yield was too low (diseases, heterogeneity…), 

some microplots were judged as outliers and some varieties were excluded from the study (Table 

2, step 3). This curation led us to keep 81% of the trials that we considered as reliable. These data 

min 133 max 133 mean 133 
TDE1 Temperature sum to floral initiation °C.d 429 522 478 
TDF1 Temperature sum from emergence to the beginning of flowering °C.d 744 907 830 
TDM0 Temperature sum from emergence to the beginning of grain filling °C.d 991 1153 1077 
TDM3 Temperature sum from emergence to seed physiological maturity °C.d 1461 2055 1698 
TLN Potential number of leaves at flowering 22.2 36.7 29.1 
LLH Potential rank of the plant largest leaf at flowering 

  12.3 23.2 16.7 
LLS Potential area of the plant largest leaf at flowering cm² 139 670 395 
K Light extinction coefficient during vegetative growth 

  0.78 1 0.90 
LE Threshold for leaf expansion response to water stress 

  -15.6 -2.1 -4.1 
TR Threshold for stomatal conductance response to water stress 

  -14.2 -5.8 -10 
HI Potential harvest index 

  0.25 0.51 0.40 
OC Potential seed oil content % DM 47.8 62.3 56.4 

http://esdac.jrc.ec.europa.eu/content/esdb-derived-data
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can be presented as the yield results of the Terres Inovia network. But a minimum of information 

was needed to simulate a trial with the SUNFLO model. 

Several data were critical for the simulation with SUNFLO because it was not possible to define a 

default value in case of missing data. Half of the trials did not have sowing dates filled in (Table 2, 

step 4). Sowing date cannot be imputable with default value because it is highly variable from year 

to year and from site to site. 

The second major limitation is the number of previously parameterized varieties. Only a quarter of 

the varieties, 133 out of 478 unique varieties in the raw dataset, have been parameterized (Table 2, 

step 5). After having selected the observations with corresponding varietal parameters, we kept 52% 

of the trials and 33% of the observations that can be simulated with the SUNFLO model (Table 2, 

step 5). 

But these data were not complete from the perspective of SUNFLO. A large part of the trials were 

not described in terms of soil texture and depth. Only 16% of the soils were described by the 

experimenters. We had to input these data from other indirect data sources. 

Three types of data are therefore very limiting in terms of number of observations: crop management, 

varietal phenotyping and soil description. We will not be able to retrieve the old crop management 

data and we do not have control over the phenotyping campaigns. But we can have access to soil data 

by different sources. 

Table 2. Curation steps and size of corresponding dataset 

 

 

 

 

 

This loss of information was not the same over the years. Firstly, we observed that the number of 

trials conducted by Terres Inovia decreased since the year 2010 (Figure 3A). But the quality of the 

data, evaluated here by the proportion of trials that cannot be simulated (Figure 3B), has been 

increasing steadily for 20 years. The year 2014 was an exception: 66% of the sowing dates were 

missing. 

The second major source of data loss for the simulation is the number of varieties parameterized. 

Here again, there is a difference depending on the year. A large amount of data was lost because we 

did not know the characteristics of the old varieties (Figure 4). Moreover, since 2016 we also observed 

this loss of data on the most recent years because the database was not updated anymore. 
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Figure 3.  Comparison of the number of trials in the experimental network (A) and the proportion 
of possible simulations as a function of years (B). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of the number of genotypes in the experimental network and the proportion 
of possible simulations as a function of years 

 

3.2 Simulation results with different soil data sources 

We have seen that soil characterization is one of the main issues on our dataset to simulate a 

maximum number of data. Soil knowledge mainly details the accessibility of water for the plant: 

field capacity, wilting point, soil depth. Soil depth and water availability are sometimes measured 

or roughly evaluated by the experimenters (or experts). These variables have a strong influence on 

the simulation (Casadebaig, 2008). Due to their cost, other soil data are never measured. As they 
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are necessary for the SUNFLO simulation, we evaluated these parameters through the available 

water and depth. To be able to simulate the trials with missing soil data from Terres Inovia 

experimenters, we used external data: imputation by standard values or databases. The soil 

characterization data being the main source of uncertainty in the simulation results (Casadebaig, 

2008), each soil source gave different results. 

3.2.1 Simulation with standard soils 

The first way to impute missing data is to give a standard value for each trial. We compared the 

simulation results with the description of the soil by the experimenter, with 3 different standard 

soils: shallow soil (soil depth = 300mm, available water = 50mm), medium soil (soil depth = 1000mm, 

available water = 50mm) and deep soil (soil depth = 1800mm, available water = 250mm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Comparison of observed and simulated grain yield with the description of the soil by the 
experimenter (A) data and 3 different standard soils : shallow soil (soil depth = 300mm, available 
water = 50mm)(B), medium soil (soil depth = 1000mm, available water = 50mm)(C) and deep soil 
(soil depth = 1800mm, available water = 250mm)(D). The SUNFLO model estimates a simulated grain 
yield to approach the experimentally observed yield. The scatterplots show the simulated yield, on 
the y-axis, and the observed yield, on the x-axis, according to the soil data source (A-D). To facilitate 
the interpretation of the results, the graph also shows the x=y axis, in red, and the linear regression 
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curve in blue. In the case of perfect results, the points would be on the red line. The prediction error 
would be zero (RMSE = 0) and the regression line would follow the x=y axis with a slope of 1. 

From the dots clouds we can observe that the soil has a great influence on the simulation results 

(Figure 5). The simulated yields from uniform soils (Figure 5B-D) are much less variable than results 

with soil determined by experimenters (Figure 5A). The simulations with standard soils did not 

succeed in separating much differences between the observations. Moreover, we see that the deeper 

the soil, the higher the simulated yield. The prediction error (RMSE), which is lower in the case of 

very deep soil, shows that the Terres Inovia trials were rather set up in very favourable soil conditions. 

Moreover, we observe that the correlation between observed and simulated yields is much better with 

the experimenter’s soil data (A) than with a uniform soil (B-D). This approach emphasizes the added 

value of a sound knowledge of the soil type to improve the simulation results. 

3.2.2 Comparison of soil characteristics from databases 

Our first source of data, hereafter called ‘experimenter’, was provided by Terres Inovia. Soil depth 

and available water content were assessed by the experimenters who are probably familiar with 

soil quality and hydraulic properties. The disadvantage of this data source is the small amount of 

data available (Table 2). Another approach, “experimenter per municipality”, assumes that the soils 

described by the experimenter on each site in the same territory are similar. Since the municipality 

is the most accurate and reliable geographic feature available, we collected the soil variables, depth 

and available water content, by municipality. We chose the deepest soil present in each municipality 

assuming that the trials are systematically set up on soils most suitable for sunflower cultivation and 

field experimentation. This method allowed us to simulate more sites (Table 2). 

Databases can also provide soil data for each site. The SAFRAN database, hereafter called “French 

database”, the same as the one we used for meteorological data, evaluates the available water content 

and the soil depth on a grid of 8602 meshes on the French territory. The European Soil Data Centre 

(ESDAC), a “European database”, also produces a soil estimate at the European level. These two 

sources completed our knowledge of soils making possible to simulate all sites with sufficient data. 

Here we compared the available water content (awc) for the 4 different data sources, taking as 

reference the most confident source, the experimenter’s description of soils (Figure 6). 

There is logically more water available in soil when considering the soil per municipality compared 

to the experimenter’s data, as we kept the deepest soils per municipality (Figure 6A). Beyond that, 

the soils were very similar in these two designs. The French database was farther from the estimation 

of the experimenters (Figure 6B). The French database overestimated the amount of soil available 

water. The European database, on the other hand, did not result in bias but was still very far from the 

experimenter’s estimates (Fig. 6C). 
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Figure 6. Pairwise comparison of experimenter available soil water content (awc) compared to 
other indirect data sources: maximum awc per municipality (A), french database (B), european 
database (C). 

3.2.3 Results with different sources of soil characterization 

We represent here the simulation results with the 225 trials (1517 observations) (Table 2) on which 

Terres Inovia evaluated the soil data in order to properly compare the results of the different soil data 

sources (Figure 7). From a global point of view, we observed an underestimation of the simulations 

compared to the observed yields, especially for high yields. Indeed, the simulated yield rarely 

exceeded 40 q.ha-1, whereas some observed yields reached 60 q.ha-1. This could be due to yield 

estimation on microplots where some border effects are sometimes difficult to control resulting in 

very high yields. The SUNFLO model was calibrated with data from larger experimental fields where 

no such border effects were encountered. Conversely, the low yields simulated by the SUNFLO 

model fall to 10 or less while the observed low yields are down to around 15 q.ha-1. This is probably 

due to the fact that Terres Inovia selected favorable testing environments and discarded unsuccessful 

trials. 

From a statistical point of view, the RMSE estimates a similar error between the different datasets 

with a fairly large error between 25 and 30%. But in terms of correlation coefficients and therefore 

in the ability to classify, the data from the experimenters gave better results (A) than the imputation 

methods (B-D). The RMSE were smaller, the regression slope and correlation coefficient were closer 

to 1. 
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Figure 7. Comparison of observed and simulated grain yield with the experimenter’s description 
of soil (A) data and 3 different strategies of imputation: imputed soil data per municipality (B), 
using a french soil database (C) and a european soil database (D). The scatterplots show the 
simulated yield, on the y-axis, and the observed yield, on the x-axis, according to the soil data source 
(A-D). To facilitate the interpretation of the results, the graph also shows the x=y axis, in red, and 
the linear regression curve in blue. 

3.2.4 Results of simulation depending on the effort of data collection 

We have seen that the data from experimenters gave the best simulation results (Figure 6-7, Table 

2). But the quality of these data is not homogeneous depending on the years. In fact, the years 2016-

2017 and in particular 2009 were characterized by a stronger collection effort, because Terres Inovia 

trials were integrated into research projects with Terres Inovia (CTPS and CASDAR funding). We can 

therefore consider that in these conditions the characterization of soils (and crop management) was 

of better quality. 

The scatterplots and the related statistical indicators (Figure 8) show two types of years. Years with 

routine soil data collection (2002-2008, 2010-2015, 2018-2020), where the simulation results are less 

variable, with a low correlation coefficient. For years with soil data collected as part of a research 

project, simulation results were obviously better. This experience highlights once again the 

importance of a precise characterization of the soils for getting satisfactory simulation results. This 

is especially true for sunflower grown in spring and summer under rainfed conditions.  
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Figure 8. Comparison of observed and simulated grain yields depending on the year of the trial: 
2002-2008 (A), 2010-2015 + 2018-2020 (B), 2009 (C), 2016-2017 (D) 

 

3.2.5 Selection of the best pipeline 

In order to simulate as many trials as possible, we tested different ways to implement the soil data 

for all trials with enough data to be simulated by the SUNFLO model (740 trials, 4555 observations) 

(Table 2). The first solution was to implement all the soils using databases: the French one (Table 

3A) or the European one (Table 3B) databases. Another solution was to keep the experimenter’s 

description soil data when possible at the trial scale, and at the municipality scale, and then 

complete the data from the French (Table 3C) or European (Table 3D) databases. 
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Table 3 – Simulation results for different complete designs 

 

 

 

 

The statistical indicators (Table 3) suggested two conclusions. Simulation using experimenter’s 

description of soil achieved better performances than simulation only imputed by soil databases. 

The European database gave better results than the French database from the SAFRAN mesh. 

3.3 Characterization of the environmental and genotypic effects 

The simulation results were split here in two components: an environmental effect (Figure 9B), due 

to soil, management and climatic conditions and a genotypic effect (Figure 9C).  

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of observed and simulated grain yield (q/ha) decomposed in effects of the 
environment (B) and the genotype (C) 

The environment effect was measured by assigning to each location the average simulated yield of 

all varieties at that location. To approximate the genotype effect, we have similarly assigned to each 

variety its average on all the locations of the network. Firstly, what we observe here is that the 

environmental effect is much better represented than the genotypic effect. Secondly, the environment 

effect alone is very close to or even better than the results of the interaction effect. The G by E 

interaction does not really add any information and even adds some noise compared to the 

environmental effect alone. This means that we are simulating mainly the effect of the location and 

it is difficult to access to the genotype effect, and even less to access to the response of the genotype 

to its environment. 
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4  Conclusion 

Terres Inovia’s experimental network provided a huge amount of data and detailed description of 

each trial. However, these data do not correspond to the requirements of a crop growth model: 

many crop management and soil input variables are missing, and the quality of the data is variable 

according to the data collection effort. We have seen that the quality of the data is essential to 

obtain accurate simulation results. 

With this data quality and considering the field of application, we concluded that the results were 

insufficient to separate the best varieties. Nevertheless we demonstrated that the model could simulate 

the environment effect alone. We therefore want to use these modeling results to explore the issue of 

envirotyping. With the objective to create a numerical experiment that accurately describes farming 

conditions and define groups of environments to provide year-independent context. To this end, we 

will explore methods to cluster time series of simulated stressors by functional data analysis. 

The objective of our study is to prototype a decision support system for recommending variety choice 

at sowing time, taking into account varietal characteristics as well as the cropping context. This tool, 

already in development using the R language and the Shiny package, is based on three main areas of 

advice: 

(i) classify varieties in terms of performance: use observed performance results, in which we 

strongly trust and use simulation to access to the stability of these results over time. 

(ii) express the agronomic merit of a variety according to its own disease resistance characteristics 

and the environmental biotic risk 

(iii) envirotyping to describe growing conditions and characterize performance in this context. 
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